

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Financial Assessment of Motorcycle-Taxi Electrification in Bangkok

10 October 2023

TRANSfer III | Development of Public Transport Electrification in Bangkok

Supply side

(e.g., companies, financial institutes, International funding agencies)

Key Output of the study

along with operation concept and identified roles for stakeholders

- Long-term sustainable financial mechanisms
- Pilot for whole-fleet transformation
- · Transparency and scalability

Demand side

(Public transport operators, e.g., buses, minibuses, motorcycle taxis)

Financial Assessment of Motorcycle-Taxi Electrification in Bangkok

Status of motorcycle taxi in Bangkok

Service Demand Size, 2020 (ridership)

300 million passenger-trip/year (for BKK & metro)

Service Supply Size, 2020

5,564 motorcycle taxi stands (วิน: Win) 84,889 motorcycle taxi riders

Vehicle Supply Size, 2020

87,960 motorcycle taxis **Honda, Yamaha, Suzuki** are the most popular vehicle brands

Key stakeholders

- Regulators: Department of Land Transport (DLT)

 Metropolitan Police Bureau

 Bangkok Metropolitan Administration (BMA)
- Associations: The motorcycle taxi association
- Large operators: Chatuchak, Rajathevi

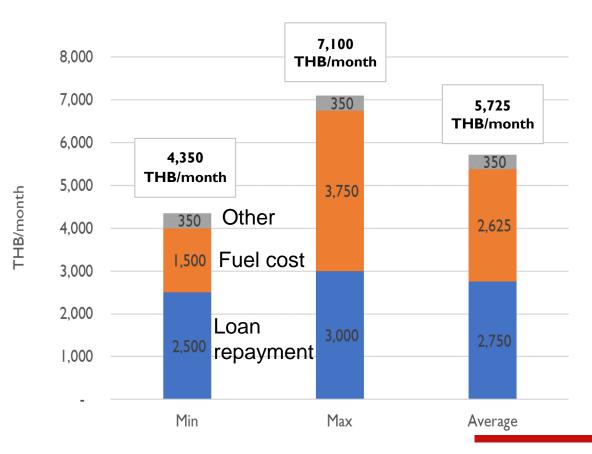
Licensing & Routing

 Fare is partly regulated, but also subject to negotiation between drivers and clients

Existing motorcycle fleet profile

Number of total fleet (national and/or BKK), categorised by fuel type, emission standards or any other criterion that is available at DLT

E-motorcycle manufacturers or operators or Pilot projects

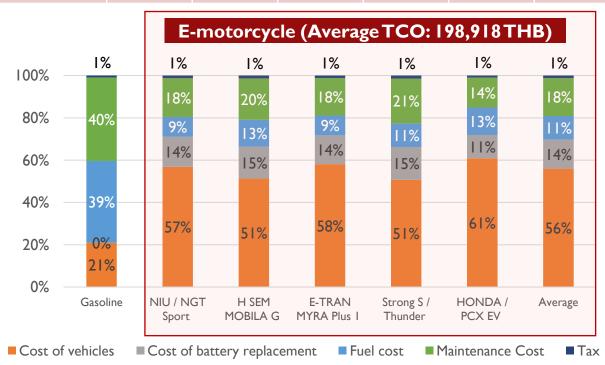

Example: Edison, Elon, Tatung, Winnonie

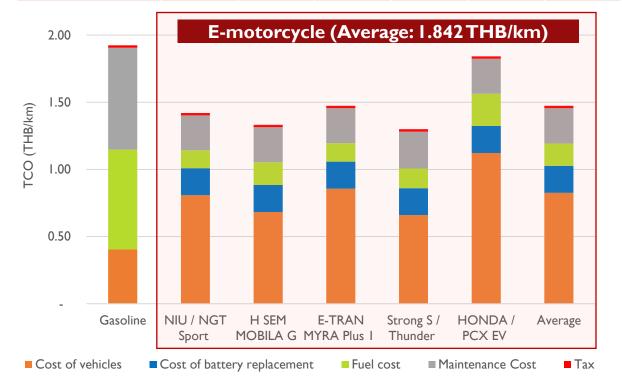
Status of motorcycle taxi operators in Bangkok

According to the field survey, the status of riders is as follows:

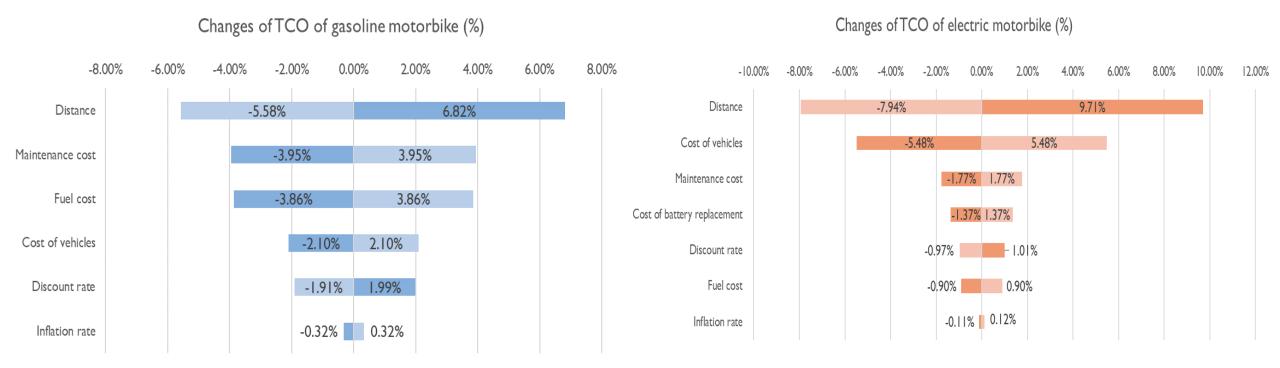
- Individual operators (majority): own vehicles and provide taxi service
- Unstable income, with an average of around 620 THB/day, varying from around 300-1,000 THB/day.
- Their expenses are approximately 4,350 7,100
 THB/month, divided into
 - (1) Loan/leasing repayment for vehicle:
 - 2,500 3,000 THB/month
 - (1) Fuel cost: **1,500 3,750 THB/month**
 - (2) Others: **about 300 400 THB/month**
- Estimated travel: 100 160 km/day

Operating cost of public motorcycle taxi (excluding income of rider)

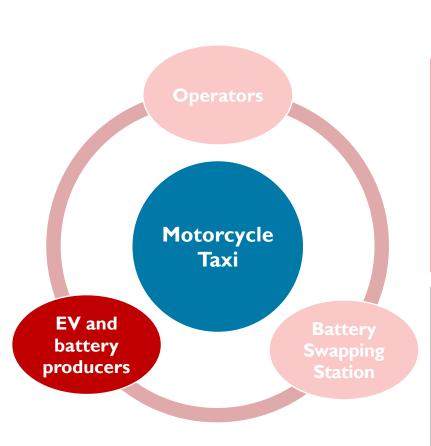

Total cost of ownership (TCO): Diesel and Electric Motorcycle Taxi


CAPEX & OPEX over 6 years (lifetime)

Cost	ICE	NIU / NGT Sport	H SEM MOBILA G	E-TRAN MYRA Plus 1	Strong S / Thunder	HONDA / PCX EV
CAPEX (THB)	54,500	136,181	119,381	142,741	116,181	178,692
OPEX (THB)	205,202	55,553	60,394	56,195	59,284	69,991
Total (THB)	259,702	191,733	179,775	198,935	175,465	248,684



Cost	ICE	NIU / NGT Sport	NIU/N Series	Strong S / Ezy	Strong S / Thunder	HONDA / PCX EV
TCO (THB/month)	3,607	2,663	2,497	2,763	2,437	3,454
TCO (THB/km)	1.924	1.420	1.332	1.474	1.300	1.842



Sensitivity analysis of TCO

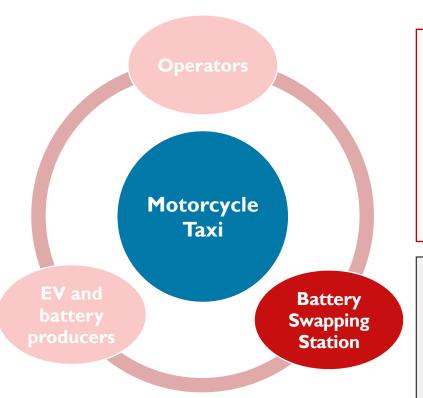
- The change distance will have the greatest impact on TCO, especially impact on TCO of electric motorbike (9.71%).
- The change in cost of vehicle affects TCO of an electric motorcycle around 5.48%, but the impact on TCO of gasoline motorcycle is 2.10%.
- The change in fuel costs affects TCO of gasoline motorcycles at 3.86% more than that of electric motorcycles at 0.9%.
- The change in the maintenance cost affects the TCO of diesel motorcycles by around 3.95%, but the impact on the TCO of electric motorcycles is 1.77%


Financial and technical challenges for motorcycle taxi electrification

Financial

- Limited access to finance and lack of confidence from financial institutions on EV manufacturers
- Higher production cost for local manufacturers compare to import cost (especially exemption of import tax)
- No reference for the residual value of EV, especially public EV that commercial bank can be applied for assessing project financing
- **Uncertain demand** of electric motorcycle
- Needs for the model of which the battery capacity is sufficient for 100 160 km/day
- Existing models of e-motorcycle in the market (small & low speed) do not match with the application of motorcycle taxi.
- Timely process for local certification of e-motorcycle
- Lack of operators' awareness on safety of electric motorcycle

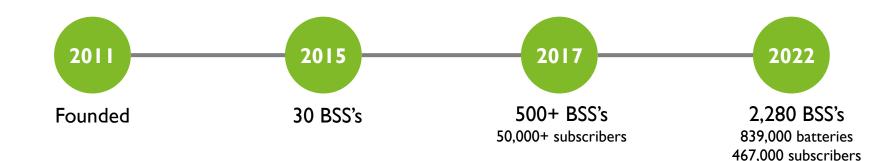
Financial and technical challenges for motorcycle taxi electrification

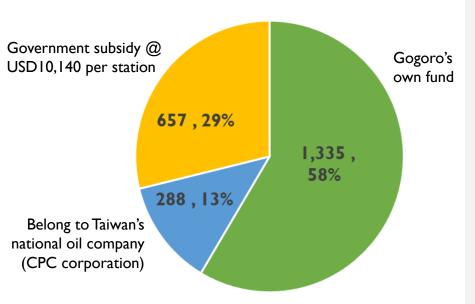

Financial

- Relatively high investment cost of battery swapping stations
- Require new business model battery as a service to reduce upfront cost
- Unstable electricity price

- No universal batteries for all models
- Timely and **complicated process for registration** of e-motorcycle
- Limited technical capacity to maintain and repair of e-motorcycle
- Existing models do not match the application of motorcycle taxi (small & low speed)

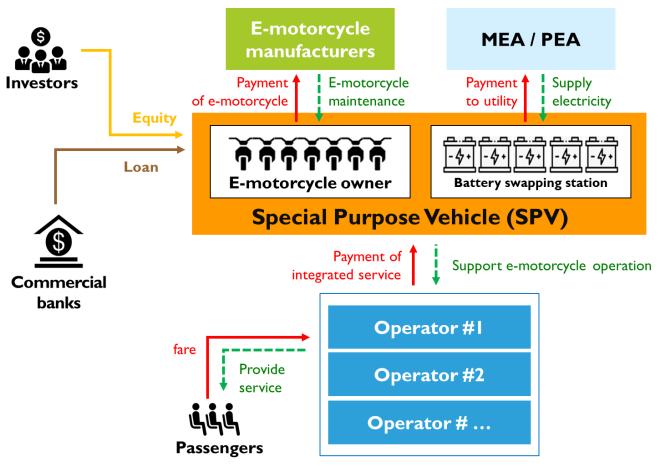
Financial and technical challenges for motorcycle taxi electrification





- Limited access to finance and lack of confidence from financial institutions on EV manufacturers
- Higher production cost for local manufacturers compare to import cost (especially exemption of import tax)
- No reference for the residual value of EV, especially public EV that commercial bank can be applied for assessing project financing
- Uncertain demand due to small number of e-motorcycle
- No clear standard and in-charge public sector on battery swapping stations in Thailand – Difficult to access to financial support from the government
- Timely and complicated permission process

Case study: Battery swapping stations: "Gogoro, Taiwan"



Financial support from the government

- 30 million USD investment in Gogoro through National Development fund (2015)
- Subsidy for BSS; 10,140 USD/station (2018)
- CPC corporation (Taiwan's state-owned company) invested in 288 BBS outside Taipei area
- Subsidy in electric motorcycle taxi

Proposed Model: Integrated End-to-end Financing Model

- This model aims to bundle all services/products required for motorcycle taxi electrification (mainly vehicle, battery, and charging infrastructure) to provide an integrated solution.
- Key players include:
 - Integrated end-to-end service SPV: owning all assets required for motorcycle taxi electrification through a long-term contract with e-motorcycle manufacturers as well as charging infrastructure suppliers and providing an integrated end-to-end service to the motorcycle taxi operators under monthly or yearly contracts.
 - Motorcycle taxi operators (riders): providing service to passengers. Operators can rent electric motorcycles together with maintenance and charging services through the SPV. Operators will be charged for integrated service on a monthly basis while the revenue comes from the fare collection.

Financial assessment of integrated end-to-end financing model

Concept: Find a charging rate for end-to-end service (THB/year) that allows an attractive investment return to integrated service SPV. (IRR > 10%)

ltems	Unit	Scenario I	Scenario II	Scenario III			
Targets of e-motorcycle in 2030	units	10,000	85,000	650,000			
Total batteries in 2030	pieces	15,000 127,5		975,000			
Total modules of batteries in 2030	modules	750 6,375		45,000			
Operating cost of operators							
Service fee	THB/year	56,500	53,000	50,500			
Baseline operating cost of operator	THB/year	52,200					
Return on investment: Integrated service SPV							
• NPV	МВ	137.36	833.07	5,283.95			
• IRR	%	10.36%	10.13%	10.17%			

Remarks: Scenario I: Assumed by consultants at 1,000 e-motorcycle deployed each year

years

9.5

9.8

9.6

Scenario II: All motorcycle taxi in Bangkok changes to e-motorcycle

Scenario III: Targets of national plan (30@30)

Payback Period

For Scenario III, the service fee is lower than the operators' baseline operating cost due to the large-scale adoption of the e-motorcycle.

However, Scenario I&II requires support for all competitiveness with the baseline situation.

Source: https://www.global-imi.com/blog/electric-vehicle-battery-swapping-boom-or-bust

Scenario analysis on support needed integrated end-to-end financing model

Items	Unit	Scenario I	Scenario II	Scenario III
Targets of e-motorcycle in 2030	units	10,000	85,000	650,000
Total batteries in 2030	pieces	15,000	127,500	975,000
Total modules of batteries in 2030	modules	750	6,375	4,500
Operating cost of operators				
Baseline operating cost of operator	THB/year	52,200		
Service fee estimated at 10% Discount fom baseline	THB/year	46,980		
Investment subsidy needed for Battery Swapping State	tions			
Subsidy per module	THB	150,000	110,000	70,000
NPV of subsidy	%	472.83	2,325.14	9,517.53
Return on investment: Integrated service SPV				
NPV	MB	96.51	735.76	4,954.08
• IRR	%	10.22%	10.32%	10.32%
Payback Period	years	9.4	9.6	9.4
Return on investment with carbon revenues: Integrate	ed service SPV			
NPV with carbon revenues	MB	99.31	752.24	5,383.20
• IRR	%	10.29%	10.37%	10.52%
Changes in NPV	MB	2.81	16.48	429.13

Remarks: Scenario I: Assumed by consultants at 1,000 e-motorcycle deployed each year

Scenario II: All motorcycle taxi in Bangkok changes to e-motorcycle

Scenario III: Targets of national plan (30@30)

Roadmap to promote battery swapping stations for public electric motorcycle

Preparation phase (I-2 yrs)

Implementation phase (2-3 yrs)

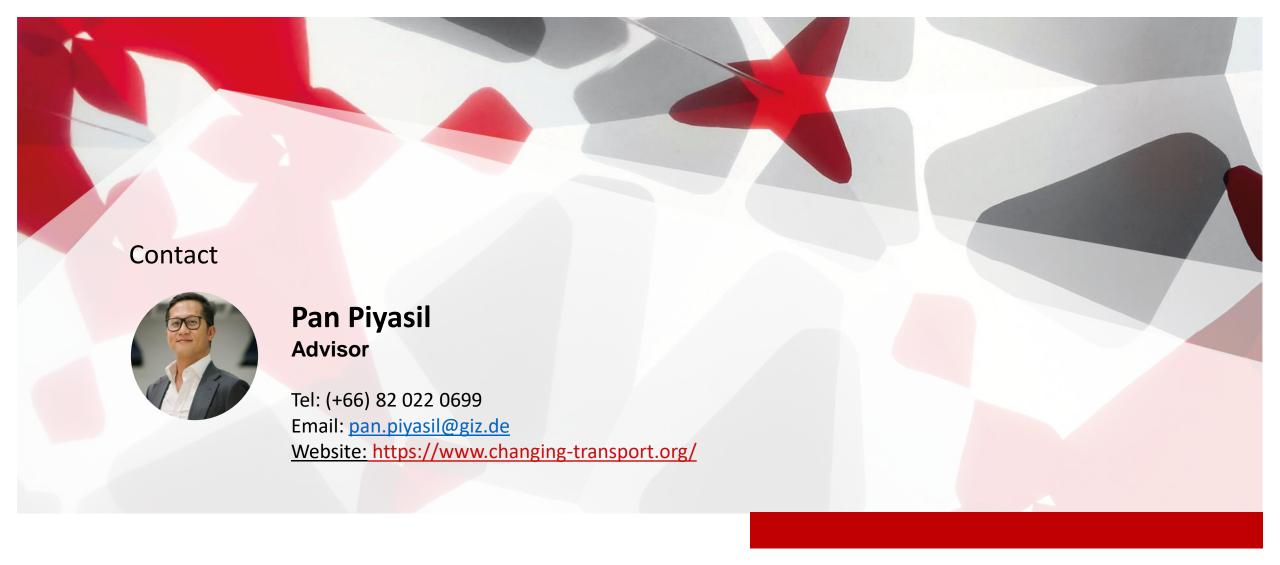
Public sector

International sources of fund

Financial institution

SPV

Operators/riders


- Set target for swapping stations
- Consider appropriate financial measures
- Provide for financial support
- Adjust the processes of battery swapping station licensing
- Identify appropriate locations with reliable electricity systems to reduce costs for investors
- Provide technical assistance to determining loans for battery swapping stations investment
- Establish integrated end-to-end service SPV
- Capacity of e-motorcycle maintenance and basic infrastructure for charging stations
- Capacity building and technical understanding on how to utilize e-motorcycle

Financial support to SPV

Soft loan to SPV

 Swapping stations to cover Bangkok and metropolitan areas

 Provide service to passengers with GPS tracking for quality of service

